INSTITUTE FOR ADVANCED SIMULATION

Civil Safety "IAS-7"

Two Methods for Detecting Pushing Behavior from Videos: A Psychological Rating System and a Deep Learning-based Approach

29-30 Nov. 2021 I **Ahmed Alia**, Mohammed Maree, David Haensel, Mohcine Chraibi, Helena Lügering, Anna Sieben, **Ezel Üsten**

Crowds, High Density & Pushing

Member of the Helmholtz Association

Forschungszentrum

Detecting Pushing Behavior

Psychology - Method

Arms & Hands	Crossed armsDropped armsHolding barriersPulling people		
Shoulders & Head	Slow penguinFast penguinSideway movementForward leaning		
Space	 Having distance Close body contact Closing the gaps Changing lines 		
Interaction	 Chatting with others Checking the environment Communicative pushing Aggressive role playing 		
Speed & Acceleration	 Fast movements High / low acceleration Frequent movements Slow and steady movements 		
Attention	 Focus on reaching the bottleneck Focus on protection Checking phone Searching for gaps 		

Categories

Pushing

Non-pushing

Results

Run MATRIX procedure:

Krippendorff's Alpha Reliability Estimate

	Alpha	LL95%CI	UL95%CI	Units	Observrs	Pairs
Ordinal	.7030	.6736	.7326	2367.0000	2.0000	2367.0000

Probability (q) of failure to achieve an alpha of at least alphamin: alphamin $\ensuremath{\mbox{\sc q}}$

.9000 1.0000 .8000 1.0000 .7000 .4056 .6700 .0138 .6000 .0000

Number of bootstrap samples:

Judges used in these computations: Ezel Helena

Examine output for SPSS errors and do not interpret if any are found

Automatic Deep Learning Approach for Pushing Behavior Detection in Videos

Problem

☐ Automatically detecting the video frames that contain pushing behavior in crowded event entrances.

Mild Pushing

Strong Pushing

Pushing behavior

Falling Behind

Just Walking

Non-pushing behavior

Main Challenges

Automatic approach is a challenging task

High similarity

High variability

Dense crowds

→ They make **feature extraction** and **building a model** difficult.

General Idea of our Approach

Image Classification Problem

Crowd Motion Estimation and Visualization

- □ Deep optical flow: Estimating per-pixel motion between video frames.
 - □ RAFT: Recurrent All-Pairs Field Transforms [1].
 - □ RAFT is one of the most promising and newest deep optical flow approaches.
- ☐ Wheel visualization method [2].

^[1] Teed, Zachary, and Jia Deng. "Raft: Recurrent all-pairs field transforms for optical flow." European conference on computer vision. Springer, Cham, 2020.

^[2] Baker, Simon, et al. "A database and evaluation methodology for optical flow." International journal of computer vision92.1 (2011): 1-31.

How to build a binary image classification model? Convolutional Neural Network (CNN)

□ CNN is a class of artificial neural network, but with convolutional and pooling layers, most commonly applied to analyze visual imagery [1].

Labeled videos are rare.

^[2] Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for convolutional neural networks." International Conference on Machine Learning. PMLR, 2019.

Member of the Helmholtz Association

Dataset Preparation

[1] Pedestrian Dynamics Data Archive hosted by the FZJ, https://ped.fz-juelich.de/db, DOI: 10.34735/ped.2018.1.

[2] Gunnar Farnebäck. Two-frame motion estimation based on polynomial expansion. In Scandinavian conference on Image analysis, pages 363-370. Springer, 2003

Results

EfficientNet-B0 with RAFT

- MobileNet with RAFT
- 2. ResNet50 with RAFT
- 3. EfficientNet-B0 with Farneback
- 4. MobileNet with Farneback
- 5. ResNet50 with Farneback

Results Output

Outlook

Psychological rating system

- Gaining the perspective of investigating the crowd heterogeneously.
 - Investigating the behavior clusters.
 - Investigating behavior/motivation propagation.
 - Investigating behavior/motivation localizations.
- Handling real-life data.
- Understanding why some crowds get a lot denser than others.

Automatic deep learning approach

- Developing a new methodology to enlarge the labeled dataset using the small number of rated videos.
- ☐ Improving the efficiency of the proposed approach.
 - Generality.
 - Accuracy.
 - Computational time.

Thank you for your attention

e.uesten@fz-juelich.de a.alia@fz-juelich.de

